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Abstract— This paper investigates a novel machine learning
framework for autonomous, real-time fish localization in
underwater videos with diverse backgrounds. The framework
consists of three different algorithms from the family of
deep learning and computer vision. Each of them is a good
solution to one or more specific needs; however, each algorithm
has its own limitations. Combining these methods using
ensemble learning is a way to accomplish background-agnostic
fish localization in real-time. A specific combination called
weighted voting learns an optimal set of weights, such that
the highest weight goes to the algorithm with the highest
prediction accuracy. Results presented for two underwater
datasets with significantly varying background and illumination
demonstrate that weighted voting can produce consistent
localization irrespective of the environment.

I. INTRODUCTION

Accurate assessment of fish population and spawning
abundance is crucial for aquaculture and long-term
ecosystem studies. This assessment provides fishery
management staff and marine scientists with valuable
data necessary for sustainability, ecosystem monitoring,
understanding patterns of fish abundance and behavior
in underwater habitats including near aquaculture farm
habitats. A motivating example is River Herring (RH) in
the northeastern United States [1], [2]. While the adult
Herrings grow in seawater, they migrate to freshwater for
spawning every spring. In turn, the juvenile Herrings migrate
to seawater every summer and fall. This yearly migration
pattern makes RH an essential component of both freshwater
and marine ecosystems, as well as coastal fisheries. The need
for continuous monitoring was established more than ten
years ago, when a decline in population to less than 3% of
the historical peaks led to the closure of many RH fisheries.

RH populations (alewife, Alosa pseudoharengus; and
blueback, Alosa aestivalis) are often counted visually,
followed by statistical corrections [3], [4]. Visual counting
is labor-intensive and impractical for thousands of hours
of monitoring video. Moreover, volunteers often count
sporadically only during daylight hours and potentially miss
a large portion of the fishery. In addition, multiple species
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might share a habitat, and the end-user(s) might need the
count of only a subset of all the species, swimming in
a given direction (e.g., upstream). Real-time, automated
species identification and counting is a complex problem. An
underwater environment has multiple sources of uncertainty
[5], [6], such as water turbidity, lighting conditions (e.g.,
day vs. night), fish overlap during periods of high passage
rates, potential for double counting (i.e., tracking multiple
occurrences of the same fish entering the view frame),
varying size and orientation of fish, and fish partially hidden
from view. A previous work [7] attempted to develop an
automated solution by leveraging the change in the electrical
conductivity of water during fish passage. Although the
presence of fish could be detected, it was difficult to establish
a quantitative relationship between the change in water
conductivity and the count of fish.

A fully automated underwater video monitoring
framework may be constructed in three stages. The
first stage is the localization of every fish in a video frame.
The second stage is the species identification of each
localized fish. The third and the final stage is counting the
species of interest and ensuring consistency of counts across
video frames. The first stage of fish localization is pivotal
to the next two. Recently, autonomous perception has been
studied in many works in computer vision and deep learning
[8], [9], [10]. While deep learning has great potential to
account for uncertainties, very few works applied the same
towards autonomous localization of fish in underwater
videos. Underwater data is noisier than terrestrial, and the
necessary enhancement is difficult to achieve in real-time.
A deep learning-based localization algorithm itself requires
high processing time. Moreover, in contrast to air or ground,
underwater background might vary significantly from one
environment to another. This variability makes it challenging
for a localization algorithm to quickly adapt to an unseen
background. In addition, very few annotated underwater
fish video datasets are publicly available. Manual labeling
is expensive, especially so for high passage rates.

This work seeks to overcome these key challenges and
achieve real-time, background-agnostic fish localization in
underwater videos. The objective is to develop a framework
which - (a) produces reasonably accurate fish masks to
be processed further for species-specific counting, and
(b) adapts to diverse backgrounds with minimal manual
labeling. This is achieved by combining three different
localization algorithms based on computer vision and deep
learning. One of them works in real-time and subtracts



the static background from all moving objects. The other
two algorithms work in near real-time and helps narrow
the set of moving objects down to fish. One of them uses
optical flow to detect objects with significant motion in a
specific direction. The other is trained on fish semantics
using thousands of labeled fish images, and it segments
the fish contours out from the background. The diversity
in background as well as fish movement pattern might
lead to one of the localization algorithms outperforming
the other two. In order to achieve consistent results across
backgrounds, two different combinations of the individual
localization algorithms are investigated and compared. One
combination weighs all of the three algorithms equally. The
other requires some manual labeling as the ground truth,
and it assigns the highest weight to the algorithm producing
results closest to the ground truth.

The rest of the paper is organized as follows. Section II
explores the literature and selects the localization algorithms.
The implementation of these algorithms is in Section III.
Subsequently, Section IV describes the datasets used in this
study. Section V discusses the results. Section VI concludes
the work.

II. LITERATURE REVIEW & SELECTION OF
ALGORITHMS

Historically, many works on localization relied on
background subtraction (BGS) as the fundamental technique
[11], [12], [13]. BGS creates a model of the background
environment and then subtracts this model from the observed
frames to identify dynamic elements. The primary goal
is to extract meaningful information about the moving
entities such as people, vehicles, or other objects of
interest, regardless of the background. In order to evaluate
BGS algorithms, a number of benchmark datasets were
reported in the literature [14]. Among these datasets, the
changedetection.net (CDnet) [15] features realistic
and challenging video sequences that accurately represent
uncertainties. The uncertainties include variations in the
illumination, dynamic backgrounds, and object occlusions.

An extensive review of the state-of-the-art BGS algorithms
can be found in the work of Sobral and Vacavant [16].
In particular, they evaluated and compared a total of 29
algorithms on the Background Models Challenge (BMC)
dataset. The comparison metrics were related to the
robustness as well as the processor and memory requirements
for each method. The top five methods were identified
based on this comparison. However, this paper did not
evaluate any of the BGS algorithms on the CDnet dataset
and instead mentioned the same as future work. In contrast,
the work of St-Charles et. al. [17] did use the CDnet
dataset for evaluation, and their algorithm outperformed all
the previously used methods when tested on the CDnet
dataset. This algorithm, called the Self-Balanced SENsitivity
SEgmenter (SuBSENSE), dynamically adapts its internal
parameters as it continuously monitors the model fidelity
and local segmentation noise levels. It utilizes spatiotemporal

binary features and color information to detect changes in
video sequences with high accuracy and efficiency.

Notably, the performance of many BGS algorithms
including SuBSENSE often degrade in underwater
environments, especially when there is significant motion
of other objects in the background. In addition, these
algorithms do not account for fish semantics. As a result,
they might separate only part of the foreground, more so
when the lighting interferes with the fish. These major
drawbacks encouraged researchers to look for alternatives,
including combining BGS with other techniques. Liu et.
al. [18] combined BGS with three-frame difference using
the logical AND operation and subjected the result to
morphology processing for noise removal. This approach
reliably detected moving objects in underwater videos with
complex scenes and poor lighting. On the other hand,
Wu et. al. [19] proposed a clustering-based multi-state
background representation model to accurately subtract
waving background objects and enhance the accuracy of
BGS. Although these approaches produced good results for
specific datasets, how they can adapt to diverse underwater
environments is yet to be investigated. Moreover, none of
them considered the semantics of the object of interest.

Braham et. al. [20] combined BGS with object semantics
and developed a new algorithm called the Semantic
Background Subtraction (SBS). This algorithm reduced
the error rate by 50% compared to the traditional BGS
algorithms. Despite the large increase in accuracy, the aspect
of semantic segmentation led to non-real-time computation.
A significant improvement over SBS was put forth by Cioppa
et. al. [21]. Their algorithm, called the Real-Time Semantic
Background Subtraction (RT-SBS) combined a real-time
BGS algorithm with high-quality semantic information
which can be provided at a slower pace, independently for
each pixel. This enabled the combination to work in real-time
and still perform similar to SBS. However, to this date
RT-SBS has shown exemplary results on terrestrial datasets
only, and it is yet to be tested in underwater scenarios. A
possible reason for this could be the shortage of labeled
underwater datasets, which hinders large-scale training and
benchmark evaluation of semantic segmentation models.
The work of Islam et. al. [22] developed an annotated,
extensive underwater dataset called the Segmentation of
Underwater Imagery (SUIM). SUIM contains over 1,500
underwater images with pixel annotations for eight object
categories: fish (vertebrates), reefs (invertebrates), aquatic
plants, wrecks/ruins, human divers, robots, and sea-floor. In
addition to this valuable dataset potentially useful for many
underwater applications, they also proposed SUIM-Net,
a fully convolutional deep neural network for semantic
segmentation, trained on SUIM.

While combining BGS with semantic segmentation has
its own merits, the latter is achieved by a deep neural
network, sensitive to the training data. As a consequence,
it may not adapt well to a new environment. A typical
underwater environment has a dynamic background with
various moving objects, and fish often exhibit agile and swift



movements unlike the other objects. Such movement patterns
of fish create substantial variations in pixel intensities over
consecutive frames. Optical flow [23], [24] is a useful
approach to capture these variations. It is also capable of
localizing fish moving in a specific direction by setting the
pixel intensity gradient positive or negative. Furthermore,
marine biologists are often interested in understanding fish
behavior, and it is possible to combine optical flow with other
approaches for the same purpose [25], [26]. Depending on
how the gradient is computed, optical flow algorithms can
be classified as global or local. While the global methods
are generally more accurate, local methods have better
runtime performance and are more suitable to track swift fish
movements. Recently, Senst et. al. [27] proposed a Robust
Local Optical Flow (RLOF) algorithm which accomplished
good tracking even in scenarios violating the assumptions of
local optical flow. Such scenarios include motion boundaries,
changing illuminations, and appearing pixels. In addition,
a standard implementation of RLOF is available in the
OpenCV library of Python.

In summary, the variability in underwater background, fish
movement pattern, passage rate as well as the shortage of
labeled datasets make it challenging to achieve adequate
localization with a single algorithm. It is worthwhile to use
an inexpensive, real-time BGS algorithm (e.g., SuBSENSE)
as a baseline, and fine-tune its results from time to
time using the more sophisticated semantic segmentation
(e.g., SUIM-Net) and optical flow (e.g., RLOF) algorithms.
Moreover, the background diversity may be addressed
by choosing an optimal combination of these individual
algorithms, where the optimal weights differ from one
background to another. The details of combining the
algorithms will be discussed in Section III.

III. IMPLEMENTATION OF ALGORITHMS

Each of the selected algorithms, viz. SuBSENSE,
SUIM-Net, and RLOF, has their own implications in the
context of fish localization in underwater videos. SuBSENSE
is the fastest of the three. It runs in real-time and isolates all
moving objects from the static surroundings. However, the
set of moving objects might include fish swimming upstream
as well as downstream, water waves, floating leaves, seagrass
with waving motions, and so on. SUIM-Net being a deep
neural network is the slowest of the three. It cannot run in
real-time; however, it is aware of fish semantics, and it can
be fine-tuned if needed. RLOF cannot run in real-time either,
but it is faster than SUIM-Net. In addition, RLOF does not
account for fish semantics, but it can localize the fish moving
in a specific direction by analyzing movement patterns.

The current work uses two steps to combine the
algorithms. The first step is preprocessing, intended to
fine-tune SUIM-Net for improved accuracy. The second
step is to merge the individual predictions using Ensemble
Learning [28].

A. Fine-Tuning the SUIM-Net

The SUIM-Net architecture [22] is a fully convolutional,
residual learning, encoder-decoder model with optional skip
connections. The encoder network extracts 256 feature maps
from input RGB images. The feature maps are utilized
by three sequential decoder layers to generate per-channel
binary pixel labels for each object category. The optional
skip layers result in real-time inference while achieving
competitive segmentation performance.

The preprocessing step consists of making a few
modifications to the existing SUIM-Net architecture to
improve its performance. The first modification is to keep
only one decoder layer instead of three. This reduces the
network to a binary segmentation model, and predicts for
every pixel whether it is the desired object (e.g., fish) or not.
This modification leverages SUIM-Net’s existing capacity
to capture intricate patterns and nuances specific to fish,
increases its precision, and makes it easier to generalize
to diverse fish datasets. The second modification is to use
the pre-trained weights for the first two encoder layers and
train only the deeper layers. This signifies honing in only
on the higher level features of the desired object (i.e., fish),
and hence better performance. The third modification is to
determine an optimal set of hyperparameters using Bayesian
optimization [29] and the validation score as a loss function.
Upon these modifications, the resulting network was trained
with images from one of the datasets. All of these led to a
significant performance improvement of the SUIM-Net.

B. Ensemble Learning to Combine Predictions

SuBSENSE, SUIM-Net, and RLOF make their individual
predictions of whether a pixel in a video frame is
a foreground (i.e., fish) or a background pixel. These
predictions may be merged using one of two Ensemble
Learning techniques, viz. soft voting (SV) or weighted voting
(WV) [28]. Both of the voting methods return a weighted
average of the individual predictions. However, SV weighs
all predictions equally, whereas WV determines a set of
optimal weights w1,w2,w3 by minimizing the following
mean square error loss:

L = ∑
x

∑
y
(w1 · I1(x,y)+w2 · I2(x,y)+w3 · I3(x,y)− IG(x,y))2

(1)
where I1(x,y), I2(x,y), I3(x,y) are the intensities of the (x,y)th

pixel of the individual output images, and IG(x,y) is the
intensity of the (x,y)th pixel of the ground truth image.
In other words, the error is simply the difference between
the prediction and the ground truth, and thus WV requires
some annotated video frames to serve as the ground truth.
Intuitively, the optimal weights are such that the highest
weight corresponds to the algorithm with the most accurate
prediction. A change in the background corresponds to a
different set of optimal weights. In general w1 ̸= w2 ̸= w3
for WV. SV is a special case where w1 = w2 = w3.

The overall localization framework thus consists of
SuBSENSE (an algorithm under BGS), SUIM-Net (a deep
neural network performing semantic segmentation), and



RLOF (an algorithm under optical flow), combined using SV
or WV (algorithms under Ensemble Learning). A pictorial
representation of the framework is shown in Fig. 1.

Fig. 1. Individual algorithms and their combination using weighted voting;
soft voting is a special case where the weights w1,w2,w3 are equal

IV. DATASETS

The localization framework shown in Fig. 1 is tested on
two distinct datasets with significantly different backgrounds.

A. The Seagrass Dataset

Ditria et. al. [30] developed a dataset named “Annotated
videos of luderick from estuaries in southeast Queensland,
Australia”. This dataset includes footage from remote
underwater video recordings of luderick and Australian
bream in seagrass habitats of estuaries in southeast
Queensland. This will be referred to as the “Seagrass” dataset
for the remainder of the paper. The raw data were collected
using submerged action cameras in the Tweed River estuary
and Tallebudgera Creek between February and July 2019.
Six cameras were deployed each sampling day, capturing
a variety of seagrass patches. The dataset comprises 4,281
video frames and 9,429 annotations, with backgrounds
varying in complexity due to different camera angles, depths,
lighting conditions, and fish positions. Because of readily
available annotations, all of the 4,281 frames were used for
either one of training, validation, or testing. Sample video
frames from the Seagrass dataset are shown in Fig. 2.

B. The IRWA Dataset

The Ipswich River Watershed Association (IRWA) RH
monitoring camera is located at the top of the Ipswich
Mills Dam near downtown Ipswich, Massachusetts, USA.
A Seaviewer 950 dropcam is housed inside of an aluminum
and wood “camera box” which also functions to direct the
fish in a single path past the camera. The Box, measuring
approximately 1 m high, by 1.5 m wide, and 1 m long
is connected to the fish ladder at the top of the dam to

Fig. 2. Sample video frames collected at seagrass habitats in Southeast
Queensland, Australia, showing luderick and Australian bream fish passage

record RH passing upstream of the dam. A picture of the
camera setup is shown in Fig. 3(a)-3(b). The camera uses
iSpy motion trigger software and is equipped with infrared
lights for night recording. The system is controlled by a
laptop computer housed inside of a waterproof pelican case.
Power is provided by an adjacent building. Video is recorded
onto a 5 TB external hard drive, which is retrieved weekly
for transfer, storage, and analysis of video in the lab. The
camera records 24/7 during the RH spawning run period,
approximately April 1st through June 1st annually. A total
of 1,055 video recordings were collected between the years
2015 and 2018, leading to a significantly large dataset for
machine learning applications.

(a) camera box (b) camera installation

Fig. 3. Installation of the Seaviewer 950 Camera at the Ipswich Mills Dam
near downtown Ipswich, Massachusetts, USA.

A total of 10 videos from this dataset were selected
to implement the localization framework developed in the
current work. The selection of the videos ensured sufficient
variability in lighting, fish swimming patterns, and fish count.
None of the videos came with annotations, so a total of about
1,200 video frames were extracted for the generation of



ground truth information via manual labeling. The manual
labeling involved drawing precise polygons around each
observed fish for each frame using the Roboflow software.
Sample video frames from the IRWA dataset are shown in
Fig. 4. Figs. 2 and 4 clearly show the distinction between
the background and illumination in the two datasets used to
test the localization framework.

Fig. 4. Sample video frames collected at the Ipswich Mills Dam in
Massachusetts, USA, showing River Herring fish passage

V. RESULTS
The end goal is to have the proposed framework

localize fish in real-time for diverse underwater backgrounds
characterized by the Seagrass and the IRWA datasets. To this
end, it is worthwhile to investigate how well each algorithm
can accomplish localization individually, and how much
improvement occurs when the predictions are combined via
either SV or WV. The validation accuracy of the individual
algorithms as well as the combinations are measured using
the F-score and the mean Intersection over Union (mIoU).
The F-score signifies a balance between precision and recall,
where the mIoU evaluates the overlap between the predicted
and ground truth regions. Together, these metrics contribute
to a comprehensive evaluation framework.

Section III mentioned that part of the preprocessing is to
fine-tune the SUIM-Net. This fine-tuning includes modifying
its architecture and training it with fish images. For the
current work, the modified SUIM-Net, still a deep neural
network, was trained one-time with 2,200 already annotated
fish images from the Seagrass dataset. It was not re-trained
with manually labeled IRWA frames, and this saved hours of
additional training time. The manually labeled IRWA frames
only trained the single-layer neural network for weighted
voting, and this took only a few minutes.

Fig. 5 shows that the mean square error loss in eq. (1)
converges to zero as the model learns the optimal weights.

This is true for both Seagrass and IRWA datasets. Table
I compares the performance of the individual localization
methods and their combinations. Fig. 6 shows the weights
for each method determined by WV. Figs. 7 and 8 show the
outputs of each algorithm for one video frame each from
Seagrass and IRWA respectively. Since the SUIM-Net is
fine-tuned with the Seagrass images, it achieves much higher
validation accuracy compared to SuBSENSE and RLOF.
Figures 7(b) - 7(d) further demonstrate SUIM-Net’s superior
performance. Unlike SUIM-Net, SuBSENSE fails to detect
the fish hidden in the background (seagrass). Moreover,
RLOF’s performance is sub-par because of no substantial
fish movement in this video. Fig. 6 and Table I together
confirm that WV assigns higher weight to SUIM-Net and
achieves better accuracy than SV. This is also reflected in
Figures 7(e) - 7(f), which show that WV can indeed localize
the fish hidden in seagrass, but SV cannot.

Fig. 5. Training progress of weighted voting: loss vs. epoch for the Seagrass
and IRWA datasets

TABLE I
VALIDATION ACCURACY: F-SCORE AND MEAN INTERSECTION OVER

UNION (MIOU) FOR THE SEAGRASS AND IRWA DATASETS

Method Seagrass Seagrass IRWA IRWA
F-score mIoU F-score mIoU

SuBSENSE 28.17 30.88 38.42 24.53
SUIM-Net 81.25 60.94 31.65 25.71

RLOF 26.57 14.54 19.08 16.37
SV 75.63 58.48 43.35 35.46
WV 80.71 60.29 61.05 41.66

Fig. 6. Computed optimal weights assigned to SuBSENSE, SUIM-Net,
and RLOF for both Seagrass and IRWA datasets towards weighted voting



(a) input (b) SuBSENSE

(c) SUIM-Net (d) RLOF

(e) SV (f) WV

Fig. 7. Localized fish in a video frame of the Seagrass dataset

For the IRWA dataset, Table I shows that SuBSENSE
has better validation accuracy than SUIM-Net and RLOF.
It can be seen in Fig. 8(c) that SUIM-Net underperforms in
an unseen background setting. The presence of sandbags in
the background and the lack of color information make it
challenging for SUIM-Net to identify the fish. In particular,
it misidentifies the sandbags as semantics belonging to fish.
In contrast, Figure 8(b) shows that SuBSENSE can eliminate
the static sandbags and localize the moving fish. Fig. 8(d)
shows that RLOF can eliminate the sandbags but fails to
identify the fish. Even though the fish had swift movements
in this video, the noise level was high, and the illumination
was not so good as Seagrass. This might have resulted in
the poor performance of the RLOF, which can be confirmed
by the accuracy metrics in Table I. Figs. 8(e) - 8(f) show
reasonably good performance of SV as well as WV. Both
are able to localize the two fish in the video frame, although
the output of WV is slightly closer to the actual shape of
the fish. Fig. 6 shows that for this dataset WV assigns the
highest weight to SuBSENSE which predicts the closest to
the ground truth, and lesser weights to the other two methods.

The above observations for two significantly different
backgrounds establish WV as a strong candidate for
background-agnostic, real-time fish localization. While the
performance of individual algorithms varied from one
background to another, the combination using WV was able
to achieve adequate localization. This was accomplished
by choosing optimal weights such that the method with a
higher validation accuracy received a higher weight. WV
outperformed SV, albeit at the cost of some manual labeling.
Furthermore, for both datasets the baseline algorithm
SuBSENSE ran at 20 frames per second, while RLOF
and SUIM-Net supported SuBSENSE every 2-3 frames.
The combination still worked in real-time and maintained
a balance between accuracy and speed, demonstrating its
practicality for real-world fish localization applications.

(a) input (b) SuBSENSE

(c) SUIM-Net (d) RLOF

(e) SV (f) WV

Fig. 8. Localized fish in a video frame of the IRWA dataset

VI. CONCLUSION

This work developed a real-time, background-agnostic
underwater fish localization framework by combining three
algorithms using ensemble learning. The baseline algorithm
performed background subtraction in real-time, and its output
was fine-tuned with semantic segmentation and optical flow
from time to time. The combination worked in real-time
and accomplished localization with good accuracy. Each
individual algorithm came with its own unique benefits, and
results showed that the performance of the same algorithm
may not remain uniform across underwater environments.
However, weighted voting led to a robust localization
framework which produced consistent results irrespective
of the background. The consistency was maintained by
prioritizing the algorithm with the highest prediction
accuracy in a given environment. Results generated by the
framework are useful for fish species identification and
counting, which in turn are the prerequisites for autonomous
ecosystem monitoring and understanding of long-term fish
behavior.

ACKNOWLEDGMENT

This research is supported by the Massachusetts Institute
of Technology Sea Grant under subaward number s5969. The
authors are grateful to John Sheppard, Meghna Marjadi, and
Cameron Mackenzie for supporting this work.

REFERENCES

[1] J. Rosset, A. H. Roy, B. I. Gahagan, A. R. Whiteley, M. P. Armstrong,
J. J. Sheppard, and A. Jordan, “Temporal Patterns of Migration and
Spawning of River Herring in Coastal Massachusetts”, Transactions
of the American Fisheries Society, vol. 146, pp. 1101 – 1114, 2017,
doi: 10.1080/00028487.2017.1341851.

[2] H. D. Legett, A. Jordaan, A. H. Roy, J. J. Sheppard, M.
Somos-Valenzuela, and M. D. Staudinger, “Daily Patterns of River
Herring (Alosa spp.) Spawning Migrations: Environmental Drivers
and Variation among Coastal Streams in Massachusetts”, Transactions
of the American Fisheries Society, vol. 150, iss. 4, pp. 501 – 513, 2021,
doi: 10.1002/tafs.10301.



[3] G. A. Nelson, “A Guide to Statistical Sampling for the Estimation of
River Herring Run Size Using Visual Counts”, Massachusetts Division
of Marine Fisheries Technical Report TR-25, 2006 (34 pages).

[4] K. H. Bieluch, T. Willis, J. Smith, and K. A. Wilson, “The
Complexities of Counting Fish: Engaging Citizen Scientists in Fish
Monitoring”, Maine Policy Review, vol. 26, iss. 2, pp. 9 – 18,
https://digitalcommons.library.umaine.edu/mpr/vol26/iss2/4.

[5] D. Li, Z. Miao, F. Peng, L. Wang, Y. Hao, Z. Wang, T. Chen, H.
Li, and Y. Zheng, “Automatic counting methods in aquaculture: A
review”, Journal of the World Aquaculture Society, vol. 52, pp. 269
– 283, 2020, doi: 10.1111/jwas.12745.

[6] X. Yang, S. Zhang, J. Liu, Q. Gao, S. Dong, and C. Zhou, “Deep
learning for smart fish farming: applications, opportunities and
challenges”, Reviews in Aquaculture, vol. 13, iss. 1, pp. 66 – 90,
2020, doi: 10.1111/raq.12464.

[7] J. J. Sheppard and M. S. Bednarski, “Utility of Single-Channel
Electronic Resistivity Counters for Monitoring River Herring
Populations”, North American Journal of Fisheries Management, vol.
35, no. 6, pp. 1144-1151, 2015, doi: 10.1080/02755947.2015.1084407.

[8] H. -H. Jebamikyous and R. Kashef, “Autonomous Vehicles
Perception (AVP) Using Deep Learning: Modeling, Assessment, and
Challenges”, IEEE Access, vol. 10, pp. 10523-10535, 2022, doi:
10.1109/ACCESS.2022.3144407.

[9] L. Tai, S. Li, and M. Liu, “Autonomous exploration of mobile
robots through deep neural networks”, International Journal of
Advanced Robotic Systems, Special Issue on Robotic Applications
Based on Deep Learning, pp. 1 – 9, July – August 2017, doi:
10.1177/1729881417703571.

[10] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer Vision for
Autonomous Vehicles: Problems, Datasets and State of the Art”,
Foundations and Trends in Computer Graphics and Vision: vol. 12,
no. 1–3, pp 1-308, 2020. doi: http://dx.doi.org/10.1561/0600000079

[11] M. Piccardi, “Background subtraction techniques: a review”,
pp. 3099-3104, Proceedings of the 2004 IEEE International
Conference on Systems, Man and Cybernetics (IEEE Cat.
No.04CH37583), The Hague, Netherlands, 10 – 13 October
2004, doi: 10.1109/ICSMC.2004.1400815.

[12] Y. Benezeth, P. M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger,
“Review and Evaluation of Commonly-Implemented Background
Subtraction Algorithms”, pp. 1-4, Proceedings 2008 19th International
Conference on Pattern Recognition, Tampa, FL, USA, 8 – 11
December 2008, doi: 10.1109/ICPR.2008.4760998.

[13] T. Bouwmans and B. G. Garcia, “Background Subtraction in Real
Applications: Challenges, Current Models and Future Directions”,
Computer Science Review, vol. 35, no. 1, pp. ?? -??, 2019.
DOI:10.1016/j.cosrev.2019.100204.

[14] R. Kalsotra and S. Arora, “A Comprehensive Survey of Video Datasets
for Background Subtraction”, IEEE Access, vol. 7, pp. 59143-59171,
2019, doi: 10.1109/ACCESS.2019.2914961.

[15] Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, P.
Ishwar, “CDnet 2014: An Expanded Change Detection Benchmark
Dataset”, 2014 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, Columbus, OH, USA, 2014, pp. 393-400,
doi: 10.1109/CVPRW.2014.126.

[16] A. Sobral and A. Vacavant, “A comprehensive review of background
subtraction algorithms evaluated with synthetic and real videos”,
Computer Vision and Image Understanding, vol. 122, pp. 4 – 21, May
2014, doi: https://doi.org/10.1016/j.cviu.2013.12.005.

[17] P. -L. St-Charles, G. -A. Bilodeau, and R. Bergevin, “SuBSENSE: A
Universal Change Detection Method With Local Adaptive Sensitivity”,
IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 359-373,
Jan. 2015, doi: 10.1109/TIP.2014.2378053.

[18] H. Liu, J. Dai, R. Wang, H. Zheng and B. Zheng, “Combining
background subtraction and three-frame difference to detect moving
object from underwater video”, pp. 1-5, Proceedings of the 2016
IEEE OCEANS Conference, Shanghai, 10 – 13 April 2016, doi:
10.1109/OCEANSAP.2016.7485613.

[19] J. Wu, G. Huang, H. Zheng, G. -L. Huang, Y. Hu and J. He,
“Repeatable Pattern Mining for Accurate Subtraction of Backgrounds
with Waving Objects in Underwater Videos”, pp. 1 – 11, Proceedings
of the 2022 IEEE 9th International Conference on Data Science and
Advanced Analytics (DSAA), Shenzhen, China, 13 – 16 October 2022,
doi: 10.1109/DSAA54385.2022.10032438.

[20] M. Braham, S. Piérard, and M. Van Droogenbroeck, “Semantic
background subtraction”, pp. 4552 – 4556, Proceedings of the 2017

IEEE International Conference on Image Processing (ICIP), Beijing,
China, 17 – 20 September 2017, doi: 10.1109/ICIP.2017.8297144.

[21] A. Cioppa, M. V. Droogenbroeck, and M. Braham, “Real-Time
Semantic Background Subtraction”, pp. 3214-3218, Proceedings of
the 2020 IEEE International Conference on Image Processing (ICIP),
Abu Dhabi, United Arab Emirates, 25 – 28 October 2020, doi:
10.1109/ICIP40778.2020.9190838.

[22] M. J. Islam, C. Edge, Y. Xiao, P. Luo, M. Mehtaz, C. Morse,
S. S. Enan, and J. Sattar, “Semantic Segmentation of Underwater
Imagery: Dataset and Benchmark”, pp. 1769 – 1776, Proceedings
of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Las Vegas, NV, USA, October 25 – 29, 2020,
doi: 10.1109/IROS45743.2020.9340821.

[23] D. J. Fleet and Y. Weiss, “Optical Flow Estimation”, Ch. 15, pp.
239 – 258 of book “Mathematical Models in Computer Vision: The
Handbook”, editors: N. Paragios, Y. chen, and O. Faugeras, Springer,
New York, NY, 2005, doi: https://doi.org/10.1007/0-387-28831-7.

[24] A. Agarwal, S. Gupta, and D. K. Singh, “Review of optical
flow technique for moving object detection”, Proceedings of the
2nd International Conference on Contemporary Computing and
Informatics (IC3I), Greater Noida, India, 2016, pp. 409-413, doi:
10.1109/IC3I.2016.7917999.

[25] Y. Tanaka, S. Yamabe, K. Fukae, T. Imai, K. Arai and T.
Kobayashi, “Quantification of Fish Behavior Using Optical Flow”,
Proceedings of the IEEE 11th Global Conference on Consumer
Electronics (GCCE), Osaka, Japan, 2022, pp. 125-126, doi:
10.1109/GCCE56475.2022.10014411.

[26] M. Ravanbakhsh, M. R. Shortis, F. Shafait, A. Mian, E. S. Harvey,
and J. W. Seager, “Automated Fish Detection in Underwater Images
Using Shape-Based Level Sets”, Photogrammetric Record, vol. 30, no.
149, pp. 46–62, 2015, doi: 10.1111/phor.12091.

[27] T. Senst, V. Eiselein, and T. Sikora, “Robust Local Optical Flow for
Feature Tracking”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 22, no. 9, pp. 1377-1387, Sept. 2012, doi:
10.1109/TCSVT.2012.2202070.

[28] R. Polikar, “Ensemble Learning”, Ch. 1, pp. 1 – 34 of book “Ensemble
Machine Learning”, editors: C. Zhang and Y. Ma, Springer, New York,
NY, 2012, https://doi.org/10.1007/978-1-4419-9326-7_1.

[29] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms”, pp. 2951 – 2959,
Proceedings of the 25th International Conference on Neural
Information Processing Systems (NIPS), vol. 2, December 2012.

[30] E. M. Ditria, R. M. Connolly, E. L. Jinks, and S. Lopez-Marcano,
“Annotated Video Footage for Automated Identification and
Counting of Fish in Unconstrained Seagrass Habitats”, Frontiers
in Marine Science, vol. 8, article 629485, (5 pages), 2021, doi:
10.3389/fmars.2021.629485.


	INTRODUCTION
	LITERATURE REVIEW & SELECTION OF ALGORITHMS
	IMPLEMENTATION OF ALGORITHMS
	Fine-Tuning the SUIM-Net
	Ensemble Learning to Combine Predictions

	DATASETS
	The Seagrass Dataset
	The IRWA Dataset

	RESULTS
	CONCLUSION
	References

