Publication Detail

Analysis of Harmonic Distortion in an Integrated Power System for Naval Applications

Edward G. West
1999

This research quantifies the voltage distortion over the broad range of operating conditions experienced by a Naval warship. A steady state model of an Integrated Power System (IPS) was developed in a commercially available power system simulation tool. The system chosen for this study was a three-phase, 4160 VAC, 80 MW power system with a 450 VAC bus to supply traditional ship service loads. Sensitive loads, such as combat systems equipment, are isolated from the harmonic content of the 450 volt bus via solid state inverters. Power generation for this system included two 30 MW and two 10 MW generators. The sizing of these generators was based on operating configurations that would result in the best fuel efficiency under the most common loading conditions. Model components were simulated and compared to data recorded for the U.S. Navy's Full Scale Advanced Development (FSAD) test system for the IPS at the Philadelphia Land Based Engineering Site (LBES). The propulsion motor used in the simulations was developed based on the advanced induction motor installed at LBES. Various loading conditions, including battle, cruise and anchor were simulated for both 10 degrees F and 90 degrees F ambient design conditions and with propulsion loads ranging from 0% to 100%. Numerous system configuration changes were implemented to determine their impact on system harmonics. These included operating the propulsion converter front end rectifiers in both controlled (varying commutation angle) and uncontrolled (diode bridge) configurations; implementation of both twelve and six pulse rectification; and installation of a tuned passive 5th harmonic filter. The simulation results are compared to both IEEE Std 519-1992 and Mil-Std 1399.

type: Full theses / dissertations

This publication is not currently available from MIT Sea Grant. Please try again later or contact MIT Sea Grant for more information.